翻訳と辞書 |
Blaschke–Lebesgue theorem : ウィキペディア英語版 | Blaschke–Lebesgue theorem In plane geometry the Blaschke–Lebesgue theorem, named after Wilhelm Blaschke and Henri Lebesgue, states that the Reuleaux triangle has the least area of all curves of given constant width. By the isoperimetric inequality, the curve of constant width with the largest area is a circle. In 1952 Ohmann proved the analogue of the Blaschke–Lebesgue theorem for Minkowski planes which uses a concept analogous to that of the Reuleaux triangle and constructed using the triangle equilateral relative to the given gauge body. ==References==
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Blaschke–Lebesgue theorem」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|